Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multistationarity in Mass Action Networks with Applications to ERK Activation

MPG-Autoren
/persons/resource/persons86157

Conradi,  Carsten
Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86167

Flockerzi,  Dietrich
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Conradi, C., & Flockerzi, D. (2012). Multistationarity in Mass Action Networks with Applications to ERK Activation. Journal of Mathematical Biology, 65(1), 107-156. doi:10.1007/s00285-011-0453-1.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8984-8
Zusammenfassung
Ordinary Differential Equations (ODEs) are an important tool in many areas of Quantitative Biology. For many ODE systems multistationarity (i.e. the existence of at least two positive steady states) is a desired feature. In general establishing multistationarity is a difficult task as realistic biological models are large in terms of states and (unknown) parameters and in most cases poorly parameterized (because of noisy measurement data of few components, a very small number of data points and only a limited number of repetitions). For mass action networks establishing multistationarity hence is equivalent to establishing the existence of at least two positive solutions of a large polynomial system with unknown coefficients. For mass action networks with certain structural properties, expressed in terms of the stoichiometric matrix and the reaction rate-exponent matrix, we present necessary and sufficient conditions for multistationarity that take the form of linear inequality systems. Solutions of these inequality systems define pairs of steady states and parameter values. We also present a sufficient condition to identify networks where the aforementioned conditions hold. To show the applicability of our results we analyse an ODE system that is defined by the mass action network describing the extracellular signal-regulated kinase (ERK) cascade (i.e. ERK-activation). © Springer, Part of Springer Science+Business Media [accessed 2013 July 2nd]