de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Towards a mechanistic understanding of linguistic diversity

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons48

Dunn,  Michael
Evolutionary Processes in Language and Culture, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Gavin_2013_bioscience.pdf
(Verlagsversion), 309KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gavin, M., Botero, C. A., Bowern, C., Colwell, R. K., Dunn, M., Dunn, R. R., et al. (2013). Towards a mechanistic understanding of linguistic diversity. Bioscience, 63, 524-535. doi:10.1525/bio.2013.63.7.6.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-7885-F
Zusammenfassung
Our species displays remarkable linguistic diversity. While the uneven distribution of this diversity demands explanation, the drivers of these patterns have not been conclusively determined. We address this issue in two steps. First, we review previous empirical studies that have suggested environmental, geographical, and socio-cultural drivers of linguistic diversification. However, contradictory results and methodological variation make it difficult to draw general conclusions. Second, we outline a program for future research. We suggest that future analyses should account for interactions among causal factors, lack of spatial and phylogenetic independence of data, and transitory patterns. Recent analytical advances in biogeography and evolutionary biology, such as simulation modeling of diversity patterns, hold promise for testing four key mechanisms of language diversification proposed here: neutral change, population movement, contact, and selection. Future modeling approaches should also evaluate how the outcomes of these processes are influenced by demography, environmental heterogeneity, and time.