de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On the uniqueness of higher-spin symmetries in AdS and CFT

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons73867

Taronna,  Massimo
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1305.5180.pdf
(Preprint), 360KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Boulanger, N., Ponomarev, D., Skvortsov, E. D., & Taronna, M. (2013). On the uniqueness of higher-spin symmetries in AdS and CFT. International Journal of Modern Physics A, 28(31): 1350162. doi:10.1142/S0217751X13501625.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-768E-D
Zusammenfassung
We study the uniqueness of higher-spin algebras which are at the core of higher-spin theories in AdS and of CFTs with exact higher-spin symmetry, i.e. conserved tensors of rank greater than two. The Jacobi identity for the gauge algebra is the simplest consistency test that appears at the quartic order for a gauge theory. Similarly, the algebra of charges in a CFT must also obey the Jacobi identity. These algebras are essentially the same. Solving the Jacobi identity under some simplifying assumptions spelled out, we obtain that the Eastwood-Vasiliev algebra is the unique solution for d=4 and d>6. In 5d there is a one-parameter family of algebras that was known before. In particular, we show that the introduction of a single higher-spin gauge field/current automatically requires the infinite tower of higher-spin gauge fields/currents. The result implies that from all the admissible non-Abelian cubic vertices in AdS, that have been recently classified for totally symmetric higher-spin gauge fields, only one vertex can pass the Jacobi consistency test. This cubic vertex is associated with a gauge deformation that is the germ of the Eastwood-Vasiliev's higher-spin algebra.