de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Reinforcement Learning in Robotics: A Survey

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84021

Kober,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kober, J., & Peters, J. (2012). Reinforcement Learning in Robotics: A Survey. In M. Wierig, & M. Otterlo (Eds.), Reinforcement Learning (pp. 579-610). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FE69-2
Zusammenfassung
As most action generation problems of autonomous robots can be phrased in terms of sequential decision problems, robotics offers a tremendously important and interesting application platform for reinforcement learning. Similarly, the real-world challenges of this domain pose a major real-world check for reinforcement learning. Hence, the interplay between both disciplines can be seen as promising as the one between physics and mathematics. Nevertheless, only a fraction of the scientists working on reinforcement learning are sufficiently tied to robotics to oversee most problems encountered in this context. Thus, we will bring the most important challenges faced by robot reinforcement learning to their attention. To achieve this goal, we will attempt to survey most work that has successfully applied reinforcement learning to behavior generation for real robots. We discuss how the presented successful approaches have been made tractable despite the complexity of the domain and will study how representations or the inclusion of prior knowledge can make a significant difference. As a result, a particular focus of our chapter lies on the choice between model-based and model-free as well as between value function-based and policy search methods. As a result, we obtain a fairly complete survey of robot reinforcement learning which should allow a general reinforcement learning researcher to understand this domain.