de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Clustering: Science or Art?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons76237

von Luxburg,  U
Research Group Machines Learning Theory, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

von Luxburg, U., Williamson, R., & Guyon, I. (2012). Clustering: Science or Art? In Unsupervised Learning and Transfer Learning. Workshop (pp. 65-79).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FE09-7
Zusammenfassung
We examine whether the quality of dierent clustering algorithms can be compared by a general, scientically sound procedure which is independent of particular clustering algorithms. We argue that the major obstacle is the diculty in evaluating a clustering algorithm without taking into account the context: why does the user cluster his data in the first place, and what does he want to do with the clustering afterwards? We argue that clustering should not be treated as an application-independent mathematical problem, but should always be studied in the context of its end-use. Dierent techniques to evaluate clustering algorithms have to be developed for dierent uses of clustering. To simplify this procedure we argue that it will be useful to build a \taxonomy of clustering problems" to identify clustering applications which can be treated in a unique way and that such an ort will be more fruitful than attempting the impossible | developing \optimal" domain-independent clustering algorithms or even classifying clustering algorithms in terms of how they work.