de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Automatic sign language identification

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4454

Gebre,  Binyam Gebrekidan
The Language Archive, MPI for Psycholinguistics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons216

Wittenburg,  Peter
The Language Archive, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

published_paper.pdf
(Verlagsversion), 190KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gebre, B. G., Wittenburg, P., & Heskes, T. (2013). Automatic sign language identification. In Proceeding of the 20th IEEE International Conference on Image Processing (ICIP) (pp. 2626-2630).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FD25-F
Zusammenfassung
We propose a Random-Forest based sign language identification system. The system uses low-level visual features and is based on the hypothesis that sign languages have varying distributions of phonemes (hand-shapes, locations and movements). We evaluated the system on two sign languages -- British SL and Greek SL, both taken from a publicly available corpus, called Dicta Sign Corpus. Achieved average F1 scores are about 95% - indicating that sign languages can be identified with high accuracy using only low-level visual features.