de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effect of sine-Gaussian glitches on searches for binary coalescence

MPG-Autoren

Canton,  T. Dal
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Lundgren,  A.
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1304.0008
(Preprint), 306KB

CQG_31_1_015016.pdf
(beliebiger Volltext), 522KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Canton, T. D., Bhagwat, S., Dhurandhar, S. V., & Lundgren, A. (2014). Effect of sine-Gaussian glitches on searches for binary coalescence. Classical and quantum gravity, 31: 015016. doi:10.1088/0264-9381/31/1/015016.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FCFE-2
Zusammenfassung
We investigate the effect of an important class of glitches occurring in the detector data on matched filter searches of gravitational waves from coalescing compact binaries in the advanced detector era. The glitches, which can be modeled as sine-Gaussians, can produce triggers with significant time delays and thus have important bearing on veto procedures as will be described in the paper. We provide approximated analytical estimates of the trigger SNR and time as a function of the parameters describing the sine-Gaussian (center time, center frequency and Q-factor) and the inspiral waveform (chirp mass). We validate our analytical predictions through simple numerical simulations, performed by filtering noiseless sine-Gaussians with the inspiral matched filter and recovering the time and value of the maximum of the resulting SNR time series. Although we identify regions of the parameter space in which each approximation no longer reproduces the numerical results, the approximations complement each other and together effectively cover the whole parameter space.