de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An Efficient Approximation to the Likelihood for Gravitational Wave Stochastic Background Detection Using Pulsar Timing Data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86728

van Haasteren,  Rutger
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1302.1903
(Preprint), 633KB

APJ_769_1_63.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ellis, J., Siemens, X., & van Haasteren, R. (2013). An Efficient Approximation to the Likelihood for Gravitational Wave Stochastic Background Detection Using Pulsar Timing Data. Astrophysical Journal, 769: 63. doi:10.1088/0004-637X/769/1/63.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FCE6-7
Zusammenfassung
Direct detection of gravitational waves by pulsar timing arrays will become feasible over the next few years. In the low frequency regime ($10^{-7}$ Hz -- $10^{-9}$ Hz), we expect that a superposition of gravitational waves from many sources will manifest itself as an isotropic stochastic gravitational wave background. Currently, a number of techniques exist to detect such a signal; however, many detection methods are computationally challenging. Here we introduce an approximation to the full likelihood function for a pulsar timing array that results in computational savings proportional to the square of the number of pulsars in the array. Through a series of simulations we show that the approximate likelihood function reproduces results obtained from the full likelihood function. We further show, both analytically and through simulations, that, on average, this approximate likelihood function gives unbiased parameter estimates for astrophysically realistic stochastic background amplitudes.