de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons22264

Xu,  Yong
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21637

Hofmann,  Oliver T.
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22010

Rinke,  Patrick
Theory, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PhysRevB.87.155311.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schlesinger, R., Xu, Y., Hofmann, O. T., Winkler, S., Frisch, J., Niederhausen, J., et al. (2013). Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Physical Review B, 87(15): 155311. doi:10.1103/PhysRevB.87.155311.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-FA55-0
Zusammenfassung
We show that the work function (Φ) of ZnO can be increased by up to 2.8 eV by depositing the molecular electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). On metals, already much smaller Φ increases involve significant charge transfer to F4TCNQ. No indication of negatively charged F4TCNQ on ZnO is found by photoemission spectroscopy. This fundamental difference is explained by a simple electrostatic model that identifies the bulk doping and band bending in ZnO as key parameters. Varying Φ of the inorganic semiconductor enables tuning the energy-level alignment at ZnO/organic semiconductor interfaces.