English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Are trait-based species rankings consistent across datasets and spatial scales?

MPS-Authors
/persons/resource/persons62433

Kattge,  Jens
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kazakou, E., Violle, C., Roumet, C., Navas, M.-L., Vile, D., Kattge, J., et al. (2014). Are trait-based species rankings consistent across datasets and spatial scales? Journal of Vegetation Science, 25(1), 235-247. doi:10.1111/jvs.12066.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-F8A4-E
Abstract
One central assumption of trait screening approaches in comparative plant ecology, i.e. simultaneous measurement of traits on a large number of species or populations, is that the species level captures a major part of trait variation. The current development of large databases has led to a new screening approach that relies on the extraction of trait values from databases, rather than on measurement of traits in the field. We tested this assumption with the following questions: (1) is the magnitude of intra-specific variability of co-occurring species lower than inter-specific variability for a given trait, in comparisons at different spatial scales; (2) is species hierarchy based on trait values conserved across different spatial scales and data sets (stable species hierarchy hypothesis); and (3) when we compare different traits, what is the more stable trait that is conserved across different spatial scales and data sets?