Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Indication for dominating surface absorption in crystalline silicon test masses at 1550nm

MPG-Autoren
/persons/resource/persons40463

Khalaidovski,  Alexander
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Steinlechner,  Jessica
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1304.4126
(Preprint), 510KB

CQG_30_16_165001.pdf
(beliebiger Volltext), 340KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khalaidovski, A., Steinlechner, J., & Schnabel, R. (2013). Indication for dominating surface absorption in crystalline silicon test masses at 1550nm. Classical and quantum gravity, 30(16): 165001. doi:10.1088/0264-9381/30/16/165001.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-F53A-5
Zusammenfassung
The sensitivity of future gravitational wave (GW) observatories will be limited by thermal noise in a wide frequency band. To reduce thermal noise, the European GW observatory Einstein GW Telescope (ET) is suggested to use crystalline silicon test masses at cryogenic temperature and a laser wavelength of 1550nm. Here, we report a measurement of the optical loss in a prototype high-resistivity crystalline silicon test mass as a function of optical intensity at room temperature. The total loss from both the bulk crystal and the surfaces was determined in a joint measurement. The characterization window ranged from small intensities below 1W/cm^2, as planned to be used in ET, up to 21kW/cm^2. A non-linear absorption was observed for intensities above a few kW/cm^2. In addition we have observed an intensity-independent offset that possibly arises from absorption in the crystal surfaces. This absorption was estimated to approx. 800 ppm/surface, which might be too high for a cryogenic operation of a fibre-suspended silicon test mass. Such an offset was not observed in other recent measurements that were insensitive to surface absorption. Finally, a set of further characterization measurements is proposed to clearly separate the contributions from the surfaces and the bulk crystal.