English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis

MPS-Authors
/persons/resource/persons50178

Grüning,  N.-M.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  H.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50483

Ralser,  M.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Bluemlein.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bluemlein, K., Glückmann, M., Grüning, N.-M., Feichtinger, R., Krüger, A., Wamelink, M., et al. (2012). Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis. Oncotarget, 3(11), 1356-1369.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-F026-8
Abstract
The glycolytic enzyme pyruvate kinase (PK) is required for cancer development, and has been implicated in the metabolic transition from oxidative to fermentative metabolism, the Warburg effect. However, the global metabolic response that follows changes in PK activity is not yet fully understood. Using shotgun proteomics, we identified 31 yeast proteins that were regulated in a PK-dependent manner. Selective reaction monitoring confirmed that their expression was dependent on PK isoform, level and activity. Most of the PK targets were amino acid metabolizing enzymes or factors of protein translation, indicating that PK plays a global regulatory role in biosynthethic amino acid metabolism. Indeed, we found strongly altered amino acid profiles when PK levels were changed. Low PK levels increased the cellular glutamine and glutamate concentrations, but decreased the levels of seven amino acids including serine and histidine. To test for evolutionary conservation of this PK function, we quantified orthologues of the identified PK targets in thyroid follicular adenoma, a tumor characterized by high PK levels and low respiratory activity. Aminopeptidase AAP-1 and serine hydroxymethyltransferase SHMT1 both showed PKM2- concentration dependence, and were upregulated in the tumor. Thus, PK expression levels and activity were important for maintaining cellular amino acid homeostasis. Mediating between energy production, ROS clearance and amino acid biosynthesis, PK thus plays a central regulatory role in the metabolism of proliferating cells.