de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Black-hole horizons as probes of black-hole dynamics II: geometrical insights

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons26311

Jaramillo,  Jose Luis
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons4338

Moesta,  Philipp
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1108.0061
(Preprint), 348KB

PRD85_084031.pdf
(beliebiger Volltext), 367KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jaramillo, J. L., Macedo, R. P., Moesta, P., & Rezzolla, L. (2012). Black-hole horizons as probes of black-hole dynamics II: geometrical insights. Physical Review D, 85: 084031. doi:10.1103/PhysRevD.85.084031.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-EEE0-4
Zusammenfassung
In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More specifically, dynamical horizons provide appropriate inner screens in a 3+1 setting and, in this context, we have shown that an effective-curvature vector measured at the common horizon produced in a head-on collision merger can be correlated with the flux of linear Bondi-momentum at null infinity. In this paper we provide a more sound geometric basis to this picture. First, we show that a rigidity property of dynamical horizons, namely foliation uniqueness, leads to a preferred class of null tetrads and Weyl scalars on these hypersurfaces. Second, we identify a heuristic horizon news-like function, depending only on the geometry of spatial sections of the horizon. Fluxes constructed from this function offer refined geometric quantities to be correlated with Bondi fluxes at infinity, as well as a contact with the discussion of quasi-local 4-momentum on dynamical horizons. Third, we highlight the importance of tracking the internal horizon dual to the apparent horizon in spatial 3-slices when integrating fluxes along the horizon. Finally, we discuss the link between the dissipation of the non-stationary part of the horizon's geometry with the viscous-fluid analogy for black holes, introducing a geometric prescription for a "slowness parameter" in black-hole recoil dynamics.