Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tracking the evolution of electronic and structural properties of VO2 during the ultrafast photoinduced insulator-metal transition

MPG-Autoren
/persons/resource/persons22209

Wall,  Simon
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
ICFO-Institut de Ciencies Fotoniques;

/persons/resource/persons21517

Foglia,  Laura
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22225

Wegkamp,  Daniel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.87.115126.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wall, S., Foglia, L., Wegkamp, D., Appavoo, K., Nag, J., Haglund, R. F., et al. (2013). Tracking the evolution of electronic and structural properties of VO2 during the ultrafast photoinduced insulator-metal transition. Physical Review B, 87(11): 115126. doi:10.1103/PhysRevB.87.115126.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-ED90-2
Zusammenfassung
We present a detailed study of the photoinduced insulator-metal transition in VO2 with broadband time-resolved reflection spectroscopy. This allows us to separate the response of the lattice vibrations from the electronic dynamics and observe their individual evolution. When we excite VO2 above the photoinduced phase transition threshold, we find that the restoring forces that describe the ground-state monoclinic structure are lost during the excitation process, suggesting that an ultrafast change in the lattice potential drives the structural transition. However, by performing a series of pump-probe measurements during the nonequilibrium transition, we observe that the electronic properties of the material evolve on a different, slower time scale. This separation of time scales suggests that the early state of VO2, immediately after photoexcitation, is a nonequilibrium state that is not well defined by either the insulating or the metallic phase.