de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50190

Hambrock,  M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50479

Rademacher,  N.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50369

Kalscheuer,  V. M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

Ricciardi.pdf
(Publisher version), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ricciardi, S., Ungaro, F., Hambrock, M., Rademacher, N., Stefanelli, G., Brambilla, D., et al. (2012). CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nature Cell Biology, 14(9), 911-923. doi:10.1038/ncb2566.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-EC80-E
Abstract
Mutations of the cyclin-dependent kinase-like 5 (CDKL5) and netrin-G1 (NTNG1) genes cause a severe neurodevelopmental disorder with clinical features that are closely related to Rett syndrome, including intellectual disability, early-onset intractable epilepsy and autism. We report here that CDKL5 is localized at excitatory synapses and contributes to correct dendritic spine structure and synapse activity. To exert this role, CDKL5 binds and phosphorylates the cell adhesion molecule NGL-1. This phosphorylation event ensures a stable association between NGL-1 and PSD95. Accordingly, phospho-mutant NGL-1 is unable to induce synaptic contacts whereas its phospho-mimetic form binds PSD95 more efficiently and partially rescues the CDKL5-specific spine defects. Interestingly, similarly to rodent neurons, iPSC-derived neurons from patients with CDKL5 mutations exhibit aberrant dendritic spines, thus suggesting a common function of CDKL5 in mice and humans.