Hilfe Wegweiser Impressum Kontakt Einloggen





Geometric Sobolev-like embedding using high-dimensional Menger-like curvature


Kolasinski,  Slawomir
Geometric Measure Theory, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

(Preprint), 488KB

(beliebiger Volltext), 512KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Kolasinski, S. (2015). Geometric Sobolev-like embedding using high-dimensional Menger-like curvature. Transactions of the American Mathematical Society, 367(2), 775-811. doi:10.1090/S0002-9947-2014-05989-8.

We study a modified version of Lerman-Whitehouse Menger-like curvature defined for m+2 points in an n-dimensional Euclidean space. For 1 <= l <= m+2 and an m-dimensional subset S of R^n we also introduce global versions of this discrete curvature, by taking supremum with respect to m+2-l points on S. We then define geometric curvature energies by integrating one of the global Menger-like curvatures, raised to a certain power p, over all l-tuples of points on S. Next, we prove that if S is compact and m-Ahlfors regular and if p is greater than ml, then the P. Jones' \beta-numbers of S must decay as r^t with r \to 0 for some t in (0,1). If S is an immersed C^1 manifold or a bilipschitz image of such set then it follows that it is Reifenberg flat with vanishing constant, hence (by a theorem of David, Kenig and Toro) an embedded C^{1,t} manifold. We also define a wide class of other sets for which this assertion is true. After that, we bootstrap the exponent t to the optimal one a = 1 - ml/p showing an analogue of the Morrey-Sobolev embedding theorem. Moreover, we obtain a qualitative control over the local graph representations of S only in terms of the energy.