de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Relativistic encounters in dense stellar systems

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons20654

Amaro-Seoane,  Pau
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1009.1870
(Preprint), 224KB

MNRAS412_551.pdf
(Any fulltext), 601KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Amaro-Seoane, P., & Freitag, M. D. (2011). Relativistic encounters in dense stellar systems. Monthly Notices of the Royal Astronomical Society, 412(1), 551-554. doi:10.1111/j.1365-2966.2010.17925.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-EAB3-C
Abstract
Two coalescing black holes (BHs) represent a conspicuous source of gravitational waves (GWs). The merger involves 17 parameters in the general case of Kerr BHs, so that a successful identification and parameter extraction of the information encoded in the waves will provide us with a detailed description of the physics of BHs. A search based on matched-filtering for characterization and parameter extraction requires the development of some $10^{15}$ waveforms. If a third additional BH perturbed the system, the waveforms would not be applicable, and we would need to increase the number of templates required for a valid detection. In this letter, we calculate the probability that more than two BHs interact in the regime of strong relativity in a dense stellar cluster. We determine the physical properties necessary in a stellar system for three black holes to have a close encounter in this regime and also for an existing binary of two BHs to have a strong interaction with a third hole. In both cases the event rate is negligible. While dense stellar systems such as galactic nuclei, globular clusters and nuclear stellar clusters are the breeding grounds for the sources of gravitational waves that ground-based detectors like Advanced LIGO and Advanced VIRGO will be exploring, the analysis of the waveforms in full general relativity needs only to evaluate the two-body problem. This reduces the number of templates of waveforms to create by orders of magnitude.