de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons41853

Keppel,  D.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1211.1254
(Preprint), 558KB

PRD87_122002.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Smith, R. J. E., Cannon, K., Hanna, C., Keppel, D., & Mandel, I. (2013). Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms. Physical Review D, 87: 122002. doi:10.1103/PhysRevD.87.122002.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-E97A-7
Zusammenfassung
Accurate parameter estimation of gravitational waves from coalescing compact binary sources is a key requirement for gravitational-wave astronomy. Evaluating the posterior probability density function of the binary's parameters (component masses, sky location, distance, etc.) requires computing millions of waveforms. The computational expense of parameter estimation is dominated by waveform generation and scales linearly with the waveform computational cost. Previous work showed that gravitational waveforms from non-spinning compact binary sources are amenable to a truncated singular value decomposition, which allows them to be reconstructed via interpolation at fixed computational cost. However, the accuracy requirement for parameter estimation is typically higher than for searches, so it is crucial to ascertain that interpolation does not lead to significant errors. Here we provide a proof of principle to show that interpolated waveforms can be used to recover posterior probability density functions with negligible loss in accuracy with respect to non-interpolated waveforms. This technique has the potential to significantly increase the efficiency of parameter estimation.