Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

An Inference and Integration Approach for the Consolidation of Ranked Lists


Mysickova,  Alena
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

There are no locators available
Fulltext (public)

(Publisher version), 649KB

Supplementary Material (public)
There is no public supplementary material available

Schimek, M. G., Mysickova, A., & Budinská, E. (2012). An Inference and Integration Approach for the Consolidation of Ranked Lists. Communications in Statistics - Simulation and Computation, 41(7), 1152-1166. doi:10.1080/03610918.2012.625843.

Cite as:
In this article, we describe a new approach that combines the estimation of the lengths of highly conforming sublists with their stochastic aggregation, to deal with two or more rankings of the same set of objects. The goal is to obtain a much smaller set of informative common objects in a new rank order. The input lists can be of large or huge size, their rankings irregular and incomplete due to random and missing assignments. A moderate deviation-based inference procedure and a cross-entropy Monte Carlo technique are used to handle the combinatorial complexity of the task. Two alternative distance measures are considered that can accommodate truncated list information. Finally, the outlined approach is applied to simulated data that was motivated by microarray meta-analysis, an important field of application.