de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An Inference and Integration Approach for the Consolidation of Ranked Lists

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50440

Mysickova,  Alena
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Schimek.pdf
(Verlagsversion), 649KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schimek, M. G., Mysickova, A., & Budinská, E. (2012). An Inference and Integration Approach for the Consolidation of Ranked Lists. Communications in Statistics - Simulation and Computation, 41(7), 1152-1166. doi:10.1080/03610918.2012.625843.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-E870-3
Zusammenfassung
In this article, we describe a new approach that combines the estimation of the lengths of highly conforming sublists with their stochastic aggregation, to deal with two or more rankings of the same set of objects. The goal is to obtain a much smaller set of informative common objects in a new rank order. The input lists can be of large or huge size, their rankings irregular and incomplete due to random and missing assignments. A moderate deviation-based inference procedure and a cross-entropy Monte Carlo technique are used to handle the combinatorial complexity of the task. Two alternative distance measures are considered that can accommodate truncated list information. Finally, the outlined approach is applied to simulated data that was motivated by microarray meta-analysis, an important field of application.