de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A computational framework for boosting confidence in high-throughput protein-protein interaction datasets

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons50573

Stelzl,  U.
Molecular Interaction Networks (Ulrich Stelzl), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Hosur.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hosur, R., Peng, J., Vinayagam, A., Stelzl, U., Xu, J., Perrimon, N., et al. (2012). A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. Genome Biology, 13(8), R76-R76. doi:10.1186/gb-2012-13-8-r76.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-E7AC-7
Zusammenfassung
Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu.