English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nonadiabatic Dynamics of a Truncated Indigo Model

MPS-Authors
/persons/resource/persons58498

Cui,  Ganglong
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cui, G., & Thiel, W. (2012). Nonadiabatic Dynamics of a Truncated Indigo Model. Physical Chemistry Chemical Physics, 14(35), 12378-12384. doi:10.1039/c2cp41867c.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E6C3-A
Abstract
Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem. Phys., 2011, 13, 1618), we find an efficient deactivation process that proceeds as follows. After vertical photoexcitation, the S1(ππ*) state undergoes an essentially barrierless intramolecular single proton transfer and relaxes to the minimum of an S1 tautomer, which is structurally and energetically close to a nearby conical intersection that acts as a funnel to the S0 state; after this internal conversion, a reverse single hydrogen transfer leads back to the equilibrium structure of the most stable S0 tautomer. This deactivation process is completely dominant in our semiempirical OM2/MRCI nonadiabatic dynamics simulations. The other two mechanisms considered previously, namely excited-state intramolecular double proton transfer and trans–cis double bond isomerization, are not seen in any of the 325 trajectories of the present surface-hopping simulations. On the basis of the computed time-dependent populations of the S1 state, we estimate an S1 lifetime of about 700 fs for 2 in the gas phase.