English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Photochemical Dynamics of E-iPr-Furylfulgide.

MPS-Authors
/persons/resource/persons58716

Koslowski,  Axel
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schönborn, J. B., Koslowski, A., Thiel, W., & Hartke, B. (2012). Photochemical Dynamics of E-iPr-Furylfulgide. Physical Chemistry Chemical Physics, 14(35), 12193-12201. doi:10.1039/c2cp41817g.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E6C1-E
Abstract
As an important theoretical step towards unraveling the mechanistic details of the photochemical switching processes in molecules of the fulgide type, we carried out a large-scale, full-dimensional computational study of the ring closure reaction of E-iPr-furylfulgide. Simulated static UV spectra and femtosecond transient spectra are in good agreement with their experimental counterparts. Using surface-hopping photodynamics simulations, we identify three major de-excitation pathways and their interplay. The dominant photochemical pathway (70% of the trajectories) allows for ring closure, while the two minor pathways involve E–Z double bond isomerization rather than cyclization. The relative abundance of the pathways is rationalized by arguments linking structure with dynamics. It should be emphasized, however, that the distinction into three pathways is only a simplified interpretational model, since the actual dynamical trajectories do not strictly follow these idealized pathways but often show mixed behaviour, evolving along two or three of them during the course of the simulation.