Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Critical Appraisal of Excited-State Nonadiabatic Dynamics Simulations of 9H-Adenine

MPG-Autoren
/persons/resource/persons58410

Barbatti,  Mario
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58496

Crespo Otero,  Rachel
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Barbatti, M., Lan, Z., Crespo Otero, R., Szymczak, J., Lischka, H., & Thiel, W. (2012). Critical Appraisal of Excited-State Nonadiabatic Dynamics Simulations of 9H-Adenine. The Journal of Chemical Physics, 137(22): 22A503, pp. 1-14. doi:10.1063/1.4731649.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-E6BA-F
Zusammenfassung
In spite of the importance of nonadiabatic dynamics simulations for the understanding of ultrafast photo-induced phenomena, simulations based on different methodologies have often led to contradictory results. In this work, we proceed through a comprehensive investigation of on-the-fly surface-hopping simulations of 9H-adenine in the gas phase using different electronic structure theories (ab initio, semi-empirical, and density functional methods). Simulations that employ ab initio and semi-empirical multireference configuration interaction methods predict the experimentally observed ultrafast deactivation of 9H-adenine with similar time scales, however, through different internal conversion channels. Simulations based on time-dependent density functional theory with six different hybrid and range-corrected functionals fail to predict the ultrafast deactivation. The origin of these differences is analyzed by systematic calculations of the relevant reaction pathways, which show that these discrepancies can always be traced back to topographical features of the underlying potential energy surfaces.