de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62333

Beer,  C.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koffi, E. N., Rayner, P. J., Scholze, M., & Beer, C. (2012). Atmospheric constraints on gross primary productivity and net ecosystem productivity: Results from a carbon-cycle data assimilation system. Global Biogeochemical Cycles, 26, Gb1024. doi:10.1029/2010gb003900.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-DD5F-6
Zusammenfassung
This paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO2 observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 +/- 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO2 observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.