de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and Dynamic Global Vegetation Models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62333

Beer,  C.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62529

Rödenbeck,  C.
Inverse Data-driven Estimation, Dr. C. Rödenbeck, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Quegan, S., Beer, C., Shvidenko, A., Mccallum, I., Handoh, I. C., Peylin, P., et al. (2011). Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and Dynamic Global Vegetation Models. Global Change Biology, 17(1), 351-365. doi:10.1111/j.1365-2486.2010.02275.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-DC6A-3
Zusammenfassung
Northern Eurasia is the largest terrestrial reservoir of carbon, and its dynamics and interactions with climate are globally significant. We present five independent estimates of the contemporary carbon balance of central Siberia using three different methodologies: a landscape-ecosystem approach (LEA) that amalgamates comprehensive vegetation, soil, hydrological and morphological information into a Geographical Information System, linked to regression-based estimates of carbon flux; two Dynamic Global Vegetation Models (DGVMs); and two atmospheric inversions. Apart from one of the DGVMs, all methods produce estimates of the net biome productivity (NBP) that are consistent both amongst themselves and with a range of other estimates. They indicate the region to be a carbon sink with a NBP of 27.5 +/- 7.2 g C m-2 yr-1, which is equivalent to 352 +/- 92 Mt C yr-1 if considered representative for boreal Asia. This is comparable with fossil fuel emissions for the Russian Federation, currently estimated as 427 MtC yr-1, and implies that boreal Asia does not play the major role in the northern hemisphere land sink, typically estimated to be of magnitude 1.5-2.9 Gt C yr-1. The LEA and DGVM approaches produce very different partitioning of NBP into its component fluxes. The DGVMs find net primary production (NPP) to be nearly balanced by heterotrophic respiration, disturbance being a relatively small term pushing the system closer to equilibrium. In the LEA, heterotrophic respiration is significantly less than NPP, and disturbance plays a much larger role in the overall carbon balance. The use in the LEA of observationally based estimates of heterotrophic respiration and fire disturbance, along with a more complete description of disturbance fluxes, suggests that the partitioning derived by the LEA is more likely, and that improved process descriptions and constraints by data are needed in the DGVMs.