Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt





Characterization of ecosystem responses to climatic controls using artificial neural networks


Moffat,  A. M.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Mund,  M.
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Heimann,  M.
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., & Heimann, M. (2010). Characterization of ecosystem responses to climatic controls using artificial neural networks. Global Change Biology, 16(10), 2737-2749. doi:10.1111/j.1365-2486.2010.02171.x.

Understanding and modeling ecosystem responses to their climatic controls is one of the major challenges for predicting the effects of global change. Usually, the responses are implemented in models as parameterized functional relationships of a fixed type. In contrast, the inductive approach presented here based on artificial neural networks (ANNs) allows the relationships to be extracted directly from the data. It has been developed to explore large, fragmentary, noisy, and multidimensional datasets, such as the carbon fluxes measured at the ecosystem level with the eddy covariance technique. To illustrate this, our approach has been systematically applied to the daytime carbon flux dataset of the deciduous broadleaf forest Hainich in Germany. The total explainable variability of the half-hourly carbon fluxes from the driving climatic variables was 93.1%, showing the excellent data mining capability of the ANNs. Total photosynthetic photon flux density was identified as the dominant control of the daytime response, followed by the diffuse radiation. The vapor pressure deficit was the most important nonradiative control. From the ANNs, we were also able to deduce and visualize the dependencies and sensitivities of the response to its climatic controls. With respect to diffuse radiation, the daytime carbon response showed no saturation and the light use efficiency was three times greater for diffuse compared with direct radiation. However, with less potential radiation reaching the forest, the overall effect of diffuse radiation was slightly negative. The optimum uptake of carbon occurred at diffuse fractions between 30% and 40%. By identifying the hierarchy of the climatic controls of the ecosystem response as well as their multidimensional functional relationships, our inductive approach offers a direct interface to the data. This provides instant insight in the underlying ecosystem physiology and links the observational relationships to their representation in the modeling world.