de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62352

Carvalhais,  N.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62524

Reichstein,  M.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62472

Mahecha,  M. D.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D., Montagnani, L., et al. (2010). Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 16(10), 2813-2829. doi:10.1111/j.1365-2486.2010.02173.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-D96E-4
Abstract
Assumptions of steady-state conditions in biogeochemical modelling are often invoked because knowledge on the development status of the modelling domain is generally unavailable. Here, we investigate the role of vegetation pool sizes on nonequilibrium conditions through model-data integration approaches for a set of sites using eddy covariance CO2 flux data. The study is based on the Carnegie-Ames-Stanford Approach (CASA) model, modified (CASA(G)) in order to evaluate the sensitivity of simulated net ecosystem production (NEP) fluxes to vegetation pool sizes. The experimental design is based on the inverse model optimization of different parameter vectors performed at the measurement site level. Each parameter vector prescribes different simulation dynamics that embody different model structural assumptions concerning (non)steady-state conditions in vegetation and soil carbon pools. We further explore the potential of assimilating biometric constraints through the cost function for sites where in situ information on aboveground biomass or wood pools is available. The integration of biometric data yields marked improvements in the simulation of vegetation C pools compared to single constraints with eddy flux data. Overall, it is necessary to relax both vegetation and soil carbon pools for consistency with the observed data streams. Multiple constraints approaches also leads to variable model performance among the different experimental setups and model structures. We identify and assess the limitations of various model structures and the role of multiple constraints approaches for tackling issues of equifinality. These studies emphasize the need for establishing consistent data sets of fluxes and biometric data for successful model-data fusion.