de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62606

Wirth,  C.
Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Weedon, J. T., Cornwell, W. K., Cornelissen, J. H. C., Zanne, A. E., Wirth, C., & Coomes, D. A. (2009). Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, 12(1), 45-56. doi:10.1111/j.1461-0248.2008.01259.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-D929-B
Abstract
The carbon flux from woody debris, a crucial uncertainty within global carbon-climate models, is simultaneously affected by climate, site environment and species-based variation in wood quality. In the first global analysis attempting to explicitly tease out the wood quality contribution to decomposition, we found support for our hypothesis that, under a common climate, interspecific differences in wood traits affect woody debris decomposition patterns. A meta-analysis of 36 studies from all forested continents revealed that nitrogen, phosphorus, and C : N ratio correlate with decomposition rates of angiosperms. In addition, gymnosperm wood consistently decomposes slower than angiosperm wood within common sites, a pattern that correlates with clear divergence in wood traits between the two groups. New empirical studies are needed to test whether this difference is due to a direct effect of wood trait variation on decomposer activity or an indirect effect of wood traits on decomposition microsite environment. The wood trait-decomposition results point to an important role for changes in the wood traits of dominant tree species as a driver of carbon cycling, with likely feedback to atmospheric CO2 particularly where angiosperm species replace gymnosperms regionally. Truly worldwide upscaling of our results will require further site-based multi-species wood trait and decomposition data, particularly from low-latitude ecosystems. [References: 59]