English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty

MPS-Authors
/persons/resource/persons62608

Wutzler,  Thomas
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62606

Wirth,  C.
Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wutzler, T., Wirth, C., & Schumacher, J. (2008). Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Canadian Journal of Forest Research, 38(6), 1661-1675. doi:10.1139/X07-194.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D7A3-5
Abstract
This study provides a comprehensive set of functions for predicting biomass for Common beech (Fagus sylvatica L.) in Central Europe for all major tree compartments. The equations are based on data of stem, branch, timber, brushwood (wood with diameter below 5 or 7 cm), foliage, root, and total aboveground biomass of 443 trees from 13 studies. We used nonlinear mixed-effects models to assess the contribution of fixed effects (tree dimensions, site descriptors), random effects (grouping according to studies), and residual variance to the total variance and to obtain realistic estimates of uncertainity of biomass on an aggregated level. Candidate models differed in their basic form, the description of the variance, and inclusion of various combinations of additional fixed and random effects and were compared using the Akaike information criterion. Model performance increased most when accounting for between-study differences in the variability of biomass predictions. Further performance increased with the inclusion of the age, site index, and altitude as predictor variables. We show that neglecting variance partitioning and the fact that prediction errors of trees are not independent with respect to their predictor variables will lead to a significant underestimation of prediction variance. [References: 67]