de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62381

Gerbig,  C.
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
Fulltext (public)

BGC1185.pdf
(Publisher version), 9MB

BGC1185D.pdf
(Preprint), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Miller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B., Longo, M., Gottlieb, E. W., et al. (2008). Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data. Atmospheric Chemistry and Physics, 8(24), 7673-7696. doi:10.5194/acp-8-7673-2008.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-D717-0
Abstract
We analyze the North American budget for carbon monoxide using data for CO and formaldehyde concentrations from tall towers and aircraft in a model-data assimilation framework. The Stochastic Time-Inverted Lagrangian Transport model for CO (STILT-CO) determines local to regional-scale CO contributions associated with production from fossil fuel combustion, biomass burning, and oxidation of volatile organic compounds (VOCs) using an ensemble of Lagrangian particles driven by high resolution assimilated meteorology. In many cases, the model demonstrates high fidelity simulations of hourly surface data from tall towers and point measurements from aircraft, with somewhat less satisfactory performance in coastal regions and when CO from large biomass fires in Alaska and the Yukon Territory influence the continental US. Inversions of STILT-CO simulations for CO and formaldehyde show that current inventories of CO emissions from fossil fuel combustion are significantly too high, by almost a factor of three in summer and a factor two in early spring, consistent with recent analyses of data from the INTEXA aircraft program. Formaldehyde data help to show that sources of CO from oxidation of CH4 and other VOCs represent the dominant sources of CO over North America in summer.