de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62490

Mollicone,  D.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Achard, F., Eva, H. D., Mollicone, D., & Beuchle, R. (2008). The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 363(1501), 2331-2339. doi:10.1098/rstb.2007.2203.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-D621-2
Zusammenfassung
Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002-2005within two forest categories: 'intact forests' and 'non-intact forests'. Results show a far lower density of fire events in intact forests (5-14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies. [References: 47]