de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62551

Schumacher,  J.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Milcu, A., Schumacher, J., & Scheu, S. (2006). Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogeneity. Functional Ecology, 20(2), 261-268. doi:10.1111/j.1365-2435.2006.01098.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-D458-7
Zusammenfassung
1. The effects of the anecic earthworm Lumbricus terrestris L. on plant seedling recruitment and spatial aggregation were investigated in a microcosm glasshouse experiment by varying plant seed size (small and large); functional groups (grasses, legumes, herbs); plant species diversity (1, 3, 6); and plant functional group diversity (1, 3). 2. Generally, earthworms buried seeds quickly irrespective of seed size and species. Secondary seed dispersal (phase II dispersal) by earthworms affected plant community composition depending mainly on seed size but less on plant functional group identity and diversity: small-seeded species were repressed whereas large-seeded were promoted. 3. Although, in general, recruitment of seedlings was less in the presence of L. terrestris, recruited seedlings benefited from establishing in the vicinity of earthworm burrows. The strong aggregation of plants in the vicinity of earthworm burrows resulted in plant communities with a more heterogeneous small-scale architecture. Earthworm burrows and middens acted as an important regeneration niche for emergent seedlings by reducing microsite and nutrient limitations. 4. In conclusion, seed dispersal, seed burial, seedling recruitment, and the spatial distribution of seedlings of plant species of different functional groups and with a wide range of seed size are strongly affected by L. terrestris, and this probably affects plant community composition. [References: 44]