Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Continuing global significance of emissions of Montreal Protocol - restricted halocarbons in the United States and Canada


Gerbig,  C.
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Hurst, D. F., Lin, J. C., Romashkin, P. A., Daube, B. C., Gerbig, C., Matross, D. M., et al. (2006). Continuing global significance of emissions of Montreal Protocol - restricted halocarbons in the United States and Canada. Journal of Geophysical Research - Atmospheres, 111(15), D15302. doi:10.1029/2005JD006785.

Cite as:
Contemporary emissions of six restricted, ozone-depleting halocarbons, chlorofluorocarbon-11 (CFC-11, CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), and Halon-1211 (CBrClF2), and two nonregulated trace gases, chloroform (CHCl3) and sulfur hexafluoride (SF6), are estimated for the United States and Canada. The estimates derive from 900 to 2900 in situ measurements of each of these gases within and above the planetary boundary layer over the United States and Canada as part of the 2003 CO2 Budget and Regional Airborne–North America (COBRA-NA) study. Air masses polluted by anthropogenic sources, identified by concurrently elevated levels of carbon monoxide (CO), SF6, and CHCl3, were sampled over a wide geographical range of these two countries. For each polluted air mass, we calculated emission ratios of halocarbons to CO and employed the Stochastic Time-Inverted Lagrangian Transport (STILT) model to determine the footprint associated with the air mass. Gridded CO emission estimates were then mapped onto the footprints and combined with measured emission ratios to generate footprint-weighted halocarbon flux estimates. We present statistically significant linear relationships between halocarbon fluxes (excluding CCl4) and footprint-weighted population densities, with slopes representative of per capita emission rates. These rates indicate that contemporary emissions of five restricted halocarbons (excluding CCl4) in the United States and Canada continue to account for significant fractions (7–40%) of global emissions.