Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves


Gleixner,  G.
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Bartram, S., Jux, A., Gleixner, G., & Boland, W. (2006). Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry, 67(15), 1661-1672.

Cite as:
Two independent pathways contribute in higher plants to the formation of isopentenyl diphosphate (IDP), the central building block of isoprenoids. In general, the cytosolic mevalonate pathway (MVA) provides the precursors for sesquiterpenes and sterols, whereas the plastidial methylerythritol pathway (MEP) furnishes the monoterpene-, diterpene- and carotenoids. Administration of deuterium labeled 1-deoxy-D-xylulose and mevalolactone to lima beans (Phaseolus lunatus), followed by gas chromatographic separation and mass spectro-metric analysis of de novo produced volatiles revealed that the strict separation of both pathways does not exist. This could be confirmed by blocking the pathways individually with cerivastatin (R) (MVA) and fosmidomycin (MEP), respectively. Isotopic ratio mass spectrometry (IRMS) at natural abundance levels demonstrated independently and without the need for labeled precursors a dynamic allocation of the MVA- or the MEP-pathway in the biosynthesis of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT). Insect-feeding upregulated predominantly the MVA-pathway, while the fungal elicitor alamethicin stimulated the biosynthesis of DMNT via the MEP-pathway. (c) 2006 Elsevier Ltd. All rights reserved. [References: 40]