de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62439

Knohl,  A.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62349

Buchmann,  N.
Research Group Biodiversity Ecosystem, Dr. N. Buchmann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knohl, A., & Buchmann, N. (2005). Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopes. Global Biogeochemical Cycles, 19(4), GB4008. doi:10.1029/2004GB002301.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-D2FF-0
Zusammenfassung
Partitioning net ecosystem CO2 fluxes measured by the eddy covariance technique into their components assimilation and respiration is crucial for predicting future responses and feedbacks of ecosystems to a changing climate. On the basis of an isotopic approach with C-13, we partitioned the daytime net CO2 fluxes of a deciduous forest in central Germany into assimilation and respiration fluxes over a period of 3 weeks. This is the first attempt so far to quantify component fluxes with stable isotopes over the period of 3 weeks, enabling us to investigate the impact of environmental factors on the partitioned fluxes. Large variability in environmental conditions during the 3-week measurement campaign led to strong changes in isotopic disequilibrium between assimilation and respiration, ranging from 1 to 5%. Although this approach is still associated with large uncertainty, we found reasonable patterns in ecosystem respiration and assimilation, and a significant correlation of daytime respiration with soil temperature (R-2 = 0.48). The ratio of respiration to assimilation was highly variable on a day-to-day basis, ranging from 10% to more than 25%. This ratio was mainly controlled by soil temperature (R-2 = 0.61), indicating a strong sensitivity of ecosystem carbon dynamics to temperature changes and higher carbon uptake efficiency during cooler days. [References: 62]