de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62467

Lloyd,  J.
Research Group Carbon-Change Atmosphere, Dr. J. Lloyd, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62325

Arneth,  A.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62439

Knohl,  A.
Research Group Biodiversity Ecosystem, Dr. N. Buchmann, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62444

Kolle,  O.
Service Facility Field Measurements & Instrumentation, O. Kolle, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62549

Schulze,  E.-D.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shibistova, O., Lloyd, J., Evgrafova, S., Savushkina, N., Zrazhevskaya, G., Arneth, A., et al. (2002). Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus, Series B - Chemical and Physical Meteorology, 54(5), 552-567. doi:10.1034/j.1600-0889.2002.01348.x.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-CFB6-5
Zusammenfassung
Rates of CO2 efflux from the floor of a central Siberian Scots pine (Pinus sylvestris) forest were measured using a dynamic closed chamber system and by a eddy covariance system placed 2.5 m above the forest floor. Measurements were undertaken for a full growing season: from early May to early October 1999. Spatial variability as determined by the chamber measurements showed the rate of CO2 efflux to depend on location, with rates from relatively open areas ("glades") only being about 50% those observed below or around trees. This was despite generally higher temperatures in the glade during the day. A strong relationship between CO2 efflux rate and root density was observed in early spring, suggesting that lower rates in open areas may have been attributable to fewer roots there. Continuous measurements with the eddy covariance system provided good temporal coverage. This method, however, provided estimates of ground CO2 efflux rate rates that were about 50% lower than chamber measurements that were undertaken in areas considered to be representative of the forest as a whole. An examination of the seasonal pattern of soil CO2 efflux rates suggests that much of the variability in CO2 efflux rate could be accounted for by variations in soil temperature. Nevertheless, there were also some indications that the soil water deficits served to reduce soil CO2 efflux rates during mid-summer. Overall the sensitivity of CO2 efflux rate to temperature seems to be greater for this boreal ecosystem than has been the case for most other studies.