English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Growth and carbon stocks of a spruce forest chronosequence in central Europe

MPS-Authors
/persons/resource/persons62495

Mund,  M.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62403

Hein,  Michaela
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62549

Schulze,  E.-D.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mund, M., Kummetz, E., Hein, M., Bauer, G. A., & Schulze, E.-D. (2002). Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecology and Management, 171(3), 275-296. doi:10.1016/S0378-1127(01)00788-5.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-CF6D-B
Abstract
Human induced changes in global environmental conditions are expected to influence or, as it is hypothesised in this study, have already influenced the biomass and growth of forest ecosystems. In this study, we reconstruct the history of tree growth and quantify the standing biomass along a chronosequence of six Norway spruce stands (Picea abies [L.] Karst; 16-142 years old) on acid soils in a mountainous region with high nitrogen deposition. The inventories of the study sites, as well as the historical stem growth of the sample trees were compared with common yield tables, representing growing conditions before 1960, to find out if and when significant changes in growth of trees had occurred. The growth at tree level (0.003-0.030 m(3) yr(-1)) was about 150-350% higher than predicted by the yield tables, independent of tree age. Because of low stand densities due to early thinning, the increase of stem growth at stand level (90% higher than yield table predictions) and the stand volume (35% higher than yield table predictions) were not as high as the increase of growth at tree level. Total biomass at stand level (including stems, branches, twigs, needles and roots) ranged between 35 and 180 t C ha(-1). Net primary productivity varied between 6 and 13 t C ha(-1) yr(-1). Intensive tree thinning activities probably stimulated growth of remaining trees, but the observed growth rates were beyond what would be expected from these activities exclusively. Thus it is assumed that the fertilisation effects of increased nitrogen deposition and CO2 concentration, and improved climatic conditions due to ongoing climate change, have contributed to the observed changes in stem growth and that the thinning activities were synergetic with changing environmental conditions. The implications for carbon sinks as accountable under the Kyoto Protocol are probably small, because changes in environmental conditions are not accountable under the Kyoto Protocol and most of the observed changes in growth took place before 1990, the baseline for the Kyoto Protocol. Additionally, it is assumed that impacts on the carbon balance of forest stands due to changes in the thinning regime after 1990, which would be accountable according to article 3.4 of the Kyoto Protocol, are very small without any synergetic changes in environmental conditions. (C) 2002 Elsevier Science B.V. All rights reserved.