de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Identification of cyanobacterial non-coding RNAs by comparative genome analysis

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons82198

Vogel,  Jörg
Max-Planck Research Group RNA Biology, Max Planck Institute for Infection Biology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

Genom_Biol_2005_6_R73.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Axmann, I. M., Kensche, P., Vogel, J., Kohl, S., Herzel, H., & Hess, W. R. (2005). Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biology, 6(9): R73.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-C4BD-B
Abstract
Background Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining. With a size of 1.66 megabase-pairs, Prochlorococcus sp. MED4 has the most compact of these genomes and it is enigmatic how the few identified regulatory proteins efficiently sustain the lifestyle of an ecologically successful marine microorganism. Small non-coding RNAs (ncRNAs) control a plethora of processes in eukaryotes as well as in bacteria; however, systematic searches for ncRNAs are still lacking for most eubacterial phyla outside the enterobacteria. Results Based on a computational prediction we show the presence of several ncRNAs (cyanobacterial functional RNA or Yfr) in several different cyanobacteria of the Prochlorococcus-Synechococcus lineage. Some ncRNA genes are present only in two or three of the four strains investigated, whereas the RNAs Yfr2 through Yfr5 are structurally highly related and are encoded by a rapidly evolving gene family as their genes exist in different copy numbers and at different sites in the four investigated genomes. One ncRNA, Yfr7, is present in at least seven other cyanobacteria. In addition, control elements for several ribosomal operons were predicted as well as riboswitches for thiamine pyrophosphate and cobalamin. Conclusion This is the first genome-wide and systematic screen for ncRNAs in cyanobacteria. Several ncRNAs were both computationally predicted and their presence was biochemically verified. These RNAs may have regulatory functions and each shows a distinct phylogenetic distribution. Our approach can be applied to any group of microorganisms for which more than one total genome sequence is available for comparative analysis.