de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence

MPG-Autoren

Mäurer,  André P.
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons82038

Mehlitz,  Adrian
Department of Molecular Biology, Max Planck Institute for Infection Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons82058

Mollenkopf,  Hans J.
Core Facilities / Microarray, Max Planck Institute for Infection Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons82047

Meyer,  Thomas F.
Department of Molecular Biology, Max Planck Institute for Infection Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

PLOS_Path_2007_3_752.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mäurer, A. P., Mehlitz, A., Mollenkopf, H. J., & Meyer, T. F. (2007). Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathogens, 3(6): e83, pp. 752-769. doi:doi:10.1371/journal.ppat.0030083.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-C297-2
Zusammenfassung
The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle.