de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons77858

Chen,  Yuxiang
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78135

Hrabe,  Thomas
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78500

Pfeffer,  Stefan
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77965

Förster,  Friedrich
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chen, Y., Hrabe, T., Pfeffer, S., Pauly, O., Mateus, D., Navab, N., et al. (2012). Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (pp. 1373-1376). IEEE Xplore.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-BB7D-8
Zusammenfassung
Detection and identification of macromolecular complexes in cryo-electron tomograms is challenging due to the extremely low signal-to-noise ratio (SNR). While the state-ofthe- art method is template matching with a single template, we propose a 3-step supervised learning approach: (i) predetection of candidates, (ii) feature calculation, and (iii) final decision using a support vector machine (SVM). We use two types of features for SVM: (i) correlation coefficients from multiple templates, and (ii) rotation invariant features derived from spherical harmonics. Experiments conducted on both simulated and experimental tomograms show that our approach outperforms the state-of-the-art method.