Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana

MPG-Autoren
/persons/resource/persons62433

Kattge,  Jens
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC1744.pdf
(Verlagsversion), 2MB

BGC1744D.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

BGC1744s1.pdf
(Ergänzendes Material), 476KB

Zitation

Kato, T., Scholze, M., Knorr, W., Veenendaal, E., Kaminski, T., Kattge, J., et al. (2013). Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana. Biogeosciences, 10, 789-802. doi:10.5194/bg-10-789-2013.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-B98C-1
Zusammenfassung
Terrestrial productivity in semi-arid woodlands is strongly susceptible to changes in precipitation, and semiarid woodlands constitute an important element of the global water and carbon cycles. Here, we use the Carbon Cycle Data Assimilation System (CCDAS) to investigate the key parameters controlling ecological and hydrological activities for a semi-arid savanna woodland site in Maun, Botswana. Twenty-four eco-hydrological process parameters of a terrestrial ecosystem model are optimized against two data streams separately and simultaneously: daily averaged latent heat flux (LHF) derived from eddy covariance measurements, and decadal fraction of absorbed photosynthetically active radiation (FAPAR) derived from the Sea-viewing Wide Field-ofview Sensor (SeaWiFS). Assimilation of both data streams LHF and FAPAR for the years 2000 and 2001 leads to improved agreement between measured and simulated quantities not only for LHF and FAPAR, but also for photosynthetic CO2 uptake. The mean uncertainty reduction (relative to the prior) over all parameters is 14.9% for the simultaneous assimilation of LHF and FAPAR, 8.5% for assimilating LHF only, and 6.1% for assimilating FAPAR only. The set of parameters with the highest uncertainty reduction is similar between assimilating only FAPAR or only LHF. The highest uncertainty reduction for all three cases is found for a parameter quantifying maximum plant-available soil moisture. This indicates that not only LHF but also satellite-derived FAPAR data can be used to constrain and indirectly observe hydrological quantities