de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Imaging and manipulation of single molecules by scanning tunneling microscopy

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21573

Grill,  Leonhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Grill, L. (2013). Imaging and manipulation of single molecules by scanning tunneling microscopy. In A. S. Mikhailov, & G. Ertl (Eds.), Engineering of Chemical Complexity (pp. 27-49). New Jersey: World Scientific.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-B832-4
Abstract
The scanning tunneling microscope (STM) is not only used to image single atoms and molecules on a surface, but also to manipulate them in a controlled way. This work aims to summarize the pioneering and most representative examples in this active research field. After an introduction into the basics of the method, the topographic and electronic origin of the images and the resulting “chemical contrast” are discussed. In addition to imaging, molecular orbitals and the chemical nature of adsorbates can be identified by spectroscopy, even if their images are equivalent. Different types of molecular manipulation are presented, including examples for all three possible driving forces: Interatomic forces without a bias voltage, electron-induced manipulation and electric-field induced processes. The lateral manipulation of molecules, including the hopping and rolling of a molecular wheel, and vertical pulling experiments are discussed. The latter ones lead to particular configurations that allow conductance measurements of single molecules between two electrodes.