Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Role of O2 + QOOH in Low-Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate Coefficients

MPG-Autoren
/persons/resource/persons21563

Goldsmith,  Claude Franklin
Department of Chemical Engineering, Massachusetts Institute of Technology;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Goldsmith, C. F., Green, W. H., & Klippenstein, S. J. (2012). Role of O2 + QOOH in Low-Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate Coefficients. Journal of Physical Chemistry A, 116(13), 3325-3346. doi:10.1021/jp210722w.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-AFD8-A
Zusammenfassung
The kinetics of the reaction of molecular oxygen with hydroperoxyalkyl radicals have been studied theoretically. These reactions, often referred to as second O2 addition, or O2 + QOOH reactions, are believed to be responsible for low-temperature chain branching in hydrocarbon oxidation. The O2 + propyl system was chosen as a model system. High-level ab initio calculations of the C3H7O2 and C3H7O4 potential energy surfaces are coupled with RRKM master equation methods to compute the temperature and pressure dependence of the rate coefficients. Variable reaction coordinate transition-state theory is used to characterize the barrierless transition states for the O2 + QOOH addition reactions as well as subsequent C3H6O3 dissociation reactions. A simple kinetic mechanism is developed to illustrate the conditions under which the second O2 addition increases the number of radicals. The sequential reactions O2 + QOOH → OOQOOH → OH + keto-hydroperoxide → OH + OH + oxy-radical and the corresponding formally direct (or well skipping) reaction O2 + QOOH → OH + OH + oxy-radical increase the total number of radicals. Chain branching through this reaction is maximized in the temperature range 600–900 K for pressures between 0.1 and 10 atm. The results confirm that n-propyl is the smallest alkyl radical to exhibit the low-temperature combustion properties of larger alkyl radicals, but n-butyl is perhaps a truer combustion archetype.