de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Growth of Two-Dimensional Lithium Islands on CaO(001) Thin Films

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons22108

Shao,  Xiang
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons32659

Cui,  Yi
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Schneider,  Wolf-Dieter
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Ecole Polytechnique Federale de Lausanne, Institute of Condensed Matter Physics;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21916

Nilius,  Niklas
Chemical Physics, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shao, X., Cui, Y., Schneider, W.-D., Nilius, N., & Freund, H.-J. (2012). Growth of Two-Dimensional Lithium Islands on CaO(001) Thin Films. The Journal of Physical Chemistry C, 116(33), 17980-17984. doi:10.1021/jp306328c.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-AC22-5
Zusammenfassung
The nucleation and growth behavior of lithium on a CaO/Mo(001) thin film has been investigated by means of scanning tunneling microscopy and spectroscopy. The Li follows two different growth regimes on the surface. Whereas extended 2D islands develop on top of the defect-free CaO terraces, small 3D deposits decorate a network of domain boundaries that is present in the oxide film. The 2D islands have metallic character, as deduced from a standing wave pattern observed on their surface at low-bias. In contrast, a cationic nature is proposed for the defect-bound 3D species as a result of an electron- transfer from the Li 2s valence orbital into trap states localized in the CaO line defects. Tunneling spectroscopy reveals an unoccupied gap state below the CaO conduction band that originates from Li−O hybridization across the metal-oxide interface. With increasing diameter of the Li islands, this state shifts toward the Fermi level, reflecting the decreasing workfunction at higher Li coverage.