de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons37451

Nacci,  Christophe
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zenichowski, K., Nacci, C., Fölsch, S., Dokic, J., Klamroth, T., & Saalfrank, P. (2012). STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100). Journal of Physics: Condensed Matter, 24(39): 394009. doi:10.1088/0953-8984/24/39/394009.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-AB98-5
Zusammenfassung
The scanning tunnelling microscope (STM)-induced switching of a single cyclooctadiene molecule between two stable conformations chemisorbed on a Si(100) surface is investigated using an above threshold model including a neutral ground state and an ionic excited state potential. Switching was recently achieved experimentally with an STM operated at cryogenic temperatures (Nacci et al 2008 Phys. Rev. B 77 121405(R)) and rationalized by a below threshold model using just a single potential energy surface (Nacci et al 2009 Nano Lett. 9 2997). In the present paper, we show that experimental key findings on the inelastic electron tunnelling (IET) switching can also be rationalized using an above threshold density matrix model, which includes, in addition to the neutral ground state potential, an anionic or cationic excited potential. We use one and two-dimensional potential energy surfaces. Furthermore, the influence of two key parameters of the density matrix description, namely the electronic lifetime of the ionic resonance and the vibrational lifetimes, on the ground state potential are discussed.