Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cluster analysis of biomedical image time-series

MPG-Autoren

Wismüller,  A
Max Planck Institute of Psychiatry, Max Planck Society;

Lange,  O
Max Planck Institute of Psychiatry, Max Planck Society;

Dersch,  DR
Max Planck Institute of Psychiatry, Max Planck Society;

Leinsinger,  GL
Max Planck Institute of Psychiatry, Max Planck Society;

Hahn,  K
Max Planck Institute of Psychiatry, Max Planck Society;

Pütz,  B
Max Planck Institute of Psychiatry, Max Planck Society;

Auer,  D
Max Planck Institute of Psychiatry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wismüller, A., Lange, O., Dersch, D., Leinsinger, G., Hahn, K., Pütz, B., et al. (2002). Cluster analysis of biomedical image time-series. International Journal of Computer Vision, 46(2), 103-128.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-A24D-E
Zusammenfassung
In this paper, we present neural network clustering by deterministic annealing as a powerful strategy for self- organized segmentation of biomedical image time-series data identifying groups of pixels sharing common properties of local signal dynamics. After introducing the theoretical concept of minimal free energy vector quantization and related clustering techniques, we discuss its potential to serve as a multi- purpose computer vision strategy to image time-series analysis and visualization for many fields of medicine ranging from biomedical basic research to clinical assessment of patient data. In particular, we present applications to (i) functional MRI data analysis for human brain mapping, (ii) dynamic contrast-enhanced perfusion MRI for the diagnosis of cerebrovascular disease, and (iii) magnetic resonance mammography for the analysis of suspicious lesions in patients with breast cancer. This wide scope of completely different medical applications illustrates the flexibility and conceptual power of neural network vector quantization in this context. Although there are obvious methodological similarities, each application requires specific careful consideration w.r.t. data preprocessing, postprocessing and interpretation. This challenge can only be managed by close interdisciplinary cooperation of medical doctors, engineers, and computer scientists. Hence, this field of research can serve as an example for lively cross-fertilization between computer vision and related researc