English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of high and low anxiety on cognitive performance in a modified hole board test in C57BL/6 and DBA/2 mice

MPS-Authors

Holsboer,  F
Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ohl, F., Roedel, A., Binder, E., & Holsboer, F. (2003). Impact of high and low anxiety on cognitive performance in a modified hole board test in C57BL/6 and DBA/2 mice. European Journal of Neuroscience, 17(1), 128-136.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-9F5B-3
Abstract
We investigated the interaction between behavioural dimensions and cognitive performance in the inbred mouse strains C57BL/6 and DBA/2, which have previously been found to differ in cognitive performance and emotionality. Because it has never been evaluated whether cognitive performance and emotional behaviour are interrelated in these strains, we analysed various behavioural dimensions and cognitive functions in parallel using the modified hole board test. We could show that naive BL6 and DBA mice distinctly differed in terms of anxiety- related behaviour. Principal component analysis on the phenotyping data showed that anxiety-related behaviour was described by identical parameters and was not correlated to locomotion in the two strains. During cognitive testing, DBA mice habituated faster and performed better than BL6 mice. Principal component analysis indicated a close correlation between anxiety-related behaviour and cognitive performance in DBA mice, being associated with a highly successful cognitive performance. In BL6 mice, cognition was correlated to general exploration. This correlation turned out to be less successful in performing the modified hole board test. Our findings support the idea that high anxiety may interact with specific cognitive processing, thus offering a promising animal model for future preclinical research on the interaction of anxiety and cognitio