de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Nonlinear waves in Poynting-flux dominated outflows

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons36454

Mochol,  Iwona
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

thesis_mochol(1).pdf
(Any fulltext), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mochol, I. (2012). Nonlinear waves in Poynting-flux dominated outflows. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-8042-E
Abstract
Rotating, compact objects power some of the most spectacular phenomena in astrophysics, e.g., gamma-ray bursts, active galactic nuclei and pulsar winds. The energy is carried by Poynting flux, and the system is usually modelled using relativistic magnetohydrodynamics (MHD). However, in the relatively low density medium expected around some of these objects, the MHD approximation breaks down, allowing new, large-amplitude waves to propagate. We discuss the role of these waves in two astrophysical contexts: In blazar jets, we show that a magnetic shear, launched together with a plasma from the black hole magnetosphere, begins to accelerate particles at a large distance from its source. The resulting non-thermal emission can, nevertheless, be modulated on very short timescales, which can explain the rapid variability of the TeV gamma-ray flux observed from some blazars. In pulsar winds, we analyze the radial propagation of superluminal modes, including their damping by radiation reaction and by interaction with an external photon field. We discuss their effect on the structure of the pulsar wind termination shock, presenting new solutions in which the nonlinear wave is asymptotically matched to the constant pressure surroundings. The observational implications of these solutions are discussed for both isolated pulsars, and pulsars in binary systems.