de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Water harvest-and storage-location assessment model using GIS and remote sensing

MPG-Autoren

Weerasinghe,  H.
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Weerasinghe, H., Schneider, U. A., & Loew, A. (2011). Water harvest-and storage-location assessment model using GIS and remote sensing. Hydrology and Earth System Sciences Discussions, 8, 3353-3381. doi:10.5194/hessd-8-3353-2011.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-7F66-7
Zusammenfassung
This study describes a globally applicable method to determine the local suitability to implement water supply management strategies within the context of a river catchment. We apply this method, and develop a spatial analysis model named Geographic Water Management Potential (GWAMP). We retrieve input data from global data repositories and rescale these data to 1km spatial resolution to obtain a set of manageable input data. Potential runoff is calculated as an intermediate input using the Soil Conservation Service Curve Number (SCS-CN) equation. Multi Criteria Evaluation techniques are used to determine the suitability levels and relative importance of input parameters for water supply management. Accordingly, the model identifies, potential water harvesting-and storage sites for on-farm water storage, regional dams, and soil moisture conservation. We apply the model to two case-study locations, the Sao-Francisco and Nile catchments, which differ in their geographic and climatic conditions. The model results are validated against existing data on hydrologic networks, reservoir capacities and runoff. On average, GWAMP predictions of sites with high rain water storage suitability correlate well (83%) with the locations of existing regional dams and farm tanks. According to the results from testing and validation of the GWAMP we point out that the GWAMP can be used identify potential sites for rain water harvesting and storage technologies in a given catchment. © 2011 Author(s).