de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ricci flow and the determinant of the Laplacian on non-compact surfaces

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons59438

Aldana,  Clara Lucia
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

0909.0807
(Preprint), 418KB

03605302.2012.pdf
(beliebiger Volltext), 387KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Albin, P., Aldana, C. L., & Rochon, F. (2013). Ricci flow and the determinant of the Laplacian on non-compact surfaces. Communications in partial differential equations, 38 (4): 749, pp. 711. doi:10.1080/03605302.2012.721853.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000E-7CC1-2
Zusammenfassung
On compact surfaces with or without boundary, Osgood, Phillips and Sarnak proved that the maximum of the determinant of the Laplacian within a conformal class of metrics with fixed area occurs at a metric of constant curvature and, for negative Euler characteristic, exhibited a flow from a given metric to a constant curvature metric along which the determinant increases. The aim of this paper is to perform a similar analysis for the determinant of the Laplacian on a non-compact surface whose ends are asymptotic to hyperbolic funnels or cusps. In that context, we show that the Ricci flow converges to a metric of constant curvature and that the determinant increases along this flow.